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Abstract

An item response theory model for dealing with test speededness is proposed. The model
consists of two random processes, a Rasch process and a random guessing process, with the
random guessing gradually taking over from the Rasch process. The involved change point
and change rate are considered random parameters in order to model examinee differences
in both respects. The proposed model is evaluated on simulated data and a case study.
Key words: Rasch model, local item dependence, test speededness.

1 Introduction

Let Y),; denote the binary response (incorrect/correct, coded Y,; = 0 and Y,; = 1, respectively)
of examinee p, p=1,..., P, toitem ¢, =1,...,I. In the classical one-parameter Rasch model
(1IPL) (Rasch, 1960) Y,; depends on the examinee ability 6, and item difficulty §; in the following
way

Ypiltp ~ Bern(Fi(6)))

with

exp(8, — G;
-Pz(ep) — ( P Z)
1+ exp(6, — 0i)
and 6, ~ N(0,07) if the marginal maximum likelihood formulation is chosen. Moreover, condi-
tional on ¢, all responses of subject p are assumed independent; this is the so-called local item

(1)

independence condition. Formally, denoting YI/D = Yp1,---, Yp1),
I
P(Yp = yp| Hp) = H[Pi(gp)]ypi[l o P,-(Hp)]l‘ypi,
i=1

The Rasch model has been extended in several ways. In the two-parameter logistic model (2PL)
(Birnbaum, 1968) the difference 6, — §; is weighted by an item discrimination parameter a;:
(0. — B
PZ(HP) — exp(az( p ﬁl)) ,
1+ exp(i(0p — 5i))

(2)
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so that the influence of examinee ability on outcome depends on the item. The three-parameter
logistic model (3PL) (Birnbaum, 1968) extends the 2PL with an item specific guessing parameter
C;.

exp(ai(0p — Bi))
1+ exp(a;(0p — Bi))

The parameter ¢; clearly reflects the probability of a correct answer under random guessing. For
further interpretations of the 3PL, we refer to Hutchinson (1991).

Pi(ep) =c+(1—-¢)

The Rasch model, and item response theory models in general, are not robust with respect to
violations of the local item independence assumption. The inclusion of items with local item de-
pendence may result in contaminated estimates of test reliability, person and item parameters,
standard errors and equating coefficients, see for instance Yen (1984), Thissen et al. (1989),
Sireci et al. (1991), Yen (1993), Wainer and Thissen (1996) and Lee et al. (2001).

Yen (1993) and Ferrara et al. (1999) provide a detailed taxonomy of possible reasons for the ex-
istence of local item dependency. One of the most prevalent causes in educational testing is test
speededness. Test speededness refers to testing situations in which some examinees do not have
ample time to answer all questions. Speededness effects are often detrimental to the intended
functioning of the test in that the speed with which one responds is usually not an important
part of the construct of interest. Examinees affected by test speededness hurry through, ran-
domly guess on or even fail to complete items, usually at the end of the test, and hence receive
ability estimates that underestimate their capacities. On the other hand, the item difficulty
parameters of items administered late in the test tend to be overestimated (Douglas et al., 1998
and Oshima, 1994).

Item response theory models dealing with test speededness are relatively new.

The hybrid model of Yamamoto and Everson (1997) uses multiple item response theory models
to describe the behavior of examinees. A classical item response model is valid throughout most
of the test but end-of-test items are answered randomly by some subset of examinees. The
model identifies M possible response patterns, one for whom an item response model is valid
for all items, and M — 1 patterns with an item response model describing answers to the first

I — m items and random guessing on the last m items, m =1,..., M — 1. Formally,
exp(ai (5™ —6:)) e
Pi(m) (61()771)) = 1+exp(ai(‘91(om>—ﬂi))’ '= o
Ci, 1> 1 —m,

with m = 0,..., M — 1. Clearly, speededness is unlikely to be so straightforward, as students
do not switch immediately to random guessing beyond some point.

Bolt et al. (2002) extend the mixture Rasch model proposed by Rost (1990) to distinguish
latent classes of examinees according to the existence of speededness in their item response



patterns. Ordinal constraints are imposed on the item difficulty parameters across classes so as
to distinguish a class having no speededness effects from a class whose responses are affected
by speededness. In particular, for items early in the test, the item difficulty parameters are
constrained to be equal in the two classes; however, the item difficulty parameters of end-of-
test items in the speeded class are constrained to be larger than the respective item difficulty
parameters in the nonspeeded class. Let g denote a class indicator with g = 0, 1 referring to the
nonspeeded and speeded class respectively and let & denote the first item where the examinees
experience the effects of test speededness. The mixture Rasch model can then be stated as

_ exp(gz(jg) . ﬁz‘(g))
1+ exp(ﬂz(,g) — ﬁi(g))7

with

O = Y for i<k,
ﬂl-(o) < ﬂ(l) for i>k.

The item difficulty estimates obtained in the nonspeeded class provide more suitable estimates
of the Rasch difficulties of end-of-test items than the difficulties estimated using all examinees.
Although this model has worked quite well at identifying test speededness, it is likely overly
simplistic as it does not allow for different examinees becoming speeded at different points in
the test.

The remainder of this paper is organized as follows. In the next section we propose an item
response model that accommodates the disadvantages of the hybrid model and the mixture
Rasch model. The model can be seen as consisting of two random processes, a Rasch process
and a random guessing process, with the random guessing gradually taking over from the Rasch
process. The involved change point and change rate are considered random parameters in order
to model examinee differences in both respects. The model was first formulated by Wollack and
Cohen (2004) as a model to simulate speededness data, but it will be treated here as a full-fledged
model for test data which can also be estimated. In section 3 we evaluate the performance of
the model on the basis of a simulation study. The final section reports the results of applying
the model to a mathematics placement test.

2 A model for speeded test data with gradual process change

In this section we propose a new item response model for dealing with speeded test data. Under
the model, responses to items early in the test are governed by a Rasch model. Beyond some
point the success probability gradually decreases and eventually reduces to the success proba-
bility under random guessing. Both change point and change rate are examinee specific.

Using the same notation as before, the model can be stated as

YpilOp, 1ps Ap ~ Bern(my;)



with

7t = i+ (1—c)Py(8,) min {1, {1 - <; - np>r} , (3)

where P;(6),) is given by (1) or (2), n, (n, € [0,1]) represents the speededness point and A,
(Ap > 0) the speededness rate of examinee p. The speededness point parameter 7, identifies the
point in the test, expressed as a fraction of the number of items, where examinee p first experi-
ences an effect due to speeding. For items with ¢ < n,I there is no effect of speeding. Once the
examinee passes his/her speededness point, i/I — 1, is positive, resulting in a decrease of mp;.
The rate of decrease of mp; is controlled by the parameter A, with larger A, values resulting in
a faster decrease. In Figure 1 we illustrate the role of n and A by plotting the decay function
min{1, [1 — (z — n)]*} for some values of i and M.
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Figure 1: (a) min{1,[l — (z —n)]*} for A = 5, n = 0.5 (solid line) and n = 0.75 (broken line),
(b) min{1,[1 — (z — n)]*} for n = 0.25, A = 1 (solid line), A = 2 (broken line) and A = 0.5
(broken-dotted line).

The rationale for the proposed model is as follows. Denote P;(n,, Ay) = min{1, [1—(i/I—n,)]*}.
When examinee p encounters item 4, he/she answers according to either a Rasch process or a
random guessing process, with probabilities P;(n,, Ap) and 1 — P;(n,, Ap) respectively. Under
random guessing the answer is correct with probability ¢;. Under the Rasch process the examinee
knows the answer with probability P;(6),); if ignorant the examinee guesses at random. In Figure
2 we visualize the model with a decision tree. Clearly,

P(Ypi = 1|9pa77p7 )‘p) = Pi(npv )‘p)Pi(ep) + Pi(npa )‘p)[l - Pi(‘gp)]ci +[1 - Pi(77pv )‘p)]Ci

which simplifies to (3).

Model (3) has some interesting limiting cases:
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Figure 2: Decision tree representation of speededness model.

e if [1 — (i/I —n)]* = 0 for i/I > n (this corresponds to the limiting case A — +00) then (3)
reduces to one of the speeded classes in the hybrid model, and speededness is modeled as
random guessing,

e in case A = 0 or n = 1, the proposed model reduces to 1PL extended with random guessing
or 3PL,

e in case = 0 and A > 0 the examinee guesses at random at least to some degree for the
first item up to the final item,

e similarly to 3PL, ¢; is the lower asymptote for § — —oo.

As is usual in item response theory, the person ability parameter is assumed to be normally
distributed with mean zero and variance Jg. Concerning the parameters 7, and A, we make,

without loss of generality, the following distributional assumptions:

np ~ Beta(aaﬁ)a
Ny ~ log N(uy,a3).

For estimation we restrict the discussion to the marginal maximum likelihood method. If the
model of interest is given by (3)-(1) with a common unknown random guessing parameter c,
then the parameters to be estimated are (31, ..., 1, ¢, 02, a, 3, pir, 03), whereas under (3)-(2)
the parameters to be estimated are (a1, ...,ar,01,...,01,¢ 0,3, w, J?\). In the latter case O'g
has to be fixed at some positive constant for identification purposes. For convenience the vector
of unknown parameters will be denoted by &. In the marginal maximum likelihood method the
random effects are integrated out and the resulting likelihood is maximized with respect to be



unknown parameters. Under (3) and denoting joint density function of 8,, 1, and A, by g the
marginal likelihood function is simply

P 1 o 1
ve-11 [ /O /0 LT Pt = 5pil6s s 209 By ps Ap) A, (4)
p=1 i=1

The integrals involved in (4) can be numerically approximated by a quadrature method and
the optimization can be performed using a standard Newton-Raphson algorithm. The SAS
NLMIXED procedure fits nonlinear mixed models with multivariate normal random effect dis-
tributions. However, as long as g in (4) is characterized by a normal dependence structure
(copula) NLMIXED can be used to fit model (3), whatever the functional form of the (con-
tinuous) marginal random effect distribution functions. Indeed, as shown in Proposition 1 (see
Appendix 2), in case of a normal dependence function, appropriately chosen compositions of
probability integral transforms and inverse probability integral transforms of the marginal dis-
tributions yield a multivariate normal distribution for the transformed random effects. In some
cases, besides & also the person specific effects 6,, 7, and )\, are of special interest. Estimates
of these parameters can be obtained from an empirical Bayes analysis of the postulated model.

3 Simulation study

In this section we discuss the results of a small simulation study. Three data sets each containing
responses of 2000 examinees on 40 items were generated. Sample 1 was generated under model
(3)-(1) with moderately high speededness (o« = 9 and [ = 2). Sample 2 was generated under
model (3)-(1) with moderately low speededness (o« = 20 and § = 9). Finally, a third sample
was generated from 1PL with random guessing. The complete list of parameter values is given
in Table 1. The random effects are assumed to be independent.

Table 1: Parameter values for simulation study.

Parameter Sample 1 Sample 2 Sample 3

B1 - Bao -1 -1 -1
c 0.2 0.2 0.2
o3 1 1 1
o 9 20 -
3 2 2 -
o 0 0 -
o3 1 1 -

The effect of test speededness is illustrated in Figure 3 (a), Figure 4 (a) and Figure 5 (a) where



we plot the empirical proportions correct answers together with the theoretical ones, given by

E(Y;n) = E[E(Y}Jﬂ@pﬂ?pa)‘p)]
= E(mp)

= C+(1—C)/RPi(ep)dG1(9p) /01 /Ooomin{l, {1— <;’_np>:|>\p}dG3()‘P)dG2(np)v

in case of (3) and by

B(Y,) = o+ (1=0) [ R(6,)46:(6,)

in case of 1PL with random guessing, where G1, G2 and G5 denote the distribution functions of
0p, np and A, respectively, versus item number. Since all 3; are equal, these proportions should
not depend on item number in the absence of test speededness (see Figure 5 (a)). Clearly, test
speededness decreases the probability of a correct answer for end-of-test items. The ultimate
effect depends on the distribution of the speededness point and rate.

To do:

e graphical presentation of estimation results

e test characteristic curves?? (cf Bolt, Cohen, Wollack)

4 Application to mathematics placement test
5 Conclusion
Acknowledgements
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Appendix 1: Example SAS code

data simdatal;

infile ’c:\irm\speeded\paper\simdatal.txt’;
input y

nr person x1-x40;

nr_n=nr/40;

run;

proc nlmixed data=simdatal method=gauss noad technique=newrap

maxiter=500 maxfu=5000 gpoints=5;

parms bl-b40=-1 c=.2 s2t=1 a=9 b=2 ml=0 s21=1 ;

beta =

blxx1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10+
b1l1*x11+b12%x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20+
b21%*x21+b22%x22+b23*x23+b24*x24+b25*x25+b26*x26+b27*x27+b28*x28+b29*x29+b30*x30+
b31*x31+b32*x32+b33*x33+b34*x34+b35*x35+b36*x36+b37*x37+b38*x38+b39*x39+b40*x40;
eta=betainv(probnorm(et) ,a,b);

lambda=exp(la);

r=exp(theta-beta)/(1+exp(theta-beta));

s=(1-(nr_n-eta))**lambda;

if (s >=1) then pr=c+(1-c)x*r;

else pr=c+(1-c)*r*s;

model y ~ binary(pr);

random theta la et ~ normal([0O,ml,0],[s2t,0,s21,0,0,1])
subject=person;

run;



Appendix 2

Definition 1 A n-copula is a function C : [0,1]" — [0, 1] with the following properties
1. for every w € [0,1]™ with at least one coordinate equal to 0, C(u) = 0,
2. if all coordinates of w are 1 except uy then C(u) = ug,

3. for all a,b € [0,1]" with a < b the volume of the hyperrectangle with corners a and b is
positive, i.e.

2 2
ST ST ROy, ) > 0

11=1 in=1
where u;, = a; and u;, = b;.
So essentially a n-copula is a n-dimensional distribution function on [0, 1] with standard uniform

marginal distributions. The next theorem, due to Sklar, is central to the theory of copulas and
forms the basis of the applications of that theory to statistics.

Theorem 1 Sklar (1959) Let X' = (X1,...,X,,) be a random vector with joint distribution
function Fx and marginal distribution functions F;, 1 =1,...,n. Then there exists a copula C
such that for all x € R™

FX(w) :C(Fl(xl)aaFn(xn)) (5)
If Fy,...,F, are all continuous then C is unique, otherwise C is uniquely determined on
Ran Fy; X -+ X Ran F,. Conversely, given a copula C and marginal distribution functions

Fi,...,F,, the function Fx as defined by (5) is a joint distribution function with margins
... F,.

As is clear, Sklar’s theorem separates a joint distribution into a part that describes the de-
pendence structure (the copula) and parts that describe the marginal behavior (the marginal
distributions). For further details on copula functions we refer to Joe (1997) and Nelsen (1999).

Proposition 1 Consider a n-dimensional random vector X with joint distribution function G
and continuous marginal distribution functions G, ...,Gy. Assume that G is characterized by
a normal dependence function (copula) C' i.e.

G(z1,...,xn) = C(G1(z1),...,Gn(zn))

with

& 1(uq) @71(un) 1 )
o _1 ,R71
C(Ul,...,un)—/_oo /_OO We 2% Zdz

in which R denotes a (positive definite) correlation matriz and ®~' is the inverse standard
normal distribution function. Then the random variables

Y; =0 HGi(Xy)), i=1,...,n,

are jointly distributed as multivariate normal.
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Proof: Denote the joint distribution function of Y7,...,Y,, by H. Then

H(yi,---syn) = PYV1<y1,..., Y, <yn)
= P(@N(Gi(X1) S w1, @HGn(Xn)) < yn)
= P(Xi <G H@W)),- - X <G (D(yn)))
C(@(y1),- -, 2(yn))
- /y1 .../y" N e3F Rz,
oo Joo (2m)"/2|R|V/2

which is the distribution function of a multivariate normal distribution.
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Figure 3: Results for sample 1 (a) proportion correct versus item number: empirical (solid line),
theoretical with true parameter values (broken line), theoretical with estimated parameter values
(broken-dotted line), (b) estimated item difficulty parameters under (3)-(1) (solid line) and 1PL
with guessing (broken line), (c) difference between item difficulty estimates, (d) distribution of
0: theoretical (solid line) and fitted (broken line), (e) distribution of 7: theoretical (solid line)
and fitted (broken line) and (f) distribution of \: theoretical (solid line) and fitted (broken line).
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Figure 4: Results for sample 2 (a) proportion correct versus item number: empirical (solid line),
theoretical with true parameter values (broken line), theoretical with estimated parameter values
(broken-dotted line), (b) estimated item difficulty parameters under (3)-(1) (solid line) and 1PL
with guessing (broken line), (c) difference between item difficulty estimates, (d) distribution of
0: theoretical (solid line) and fitted (broken line), (e) distribution of n: theoretical (solid line)
and fitted (broken line) and (f) distribution of A: theoretical (solid line) and fitted (broken line).
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Figure 5: Results for sample 3 (a) proportion correct versus item number: empirical (solid line),
theoretical with true parameter values (broken line), theoretical with estimated parameter values
(broken-dotted line), (b) estimated item difficulty parameters under (3)-(1) (solid line) and 1PL
with guessing (broken line), (c) difference between item difficulty estimates, (d) distribution of
0: theoretical (solid line) and fitted (broken line), (e) distribution of n: theoretical (solid line)
and fitted (broken line) and (f) distribution of A: theoretical (solid line) and fitted (broken line).
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